tnjk.net
当前位置:首页 >> 已知函数F(x)=Ax3%Bx2+x(A,B∈R且AB≠0)的图象... >>

已知函数F(x)=Ax3%Bx2+x(A,B∈R且AB≠0)的图象...

(1)∵f(-x)=a(-x)3-b(-x)=-(ax3-bx)=-f(x),…(2分)∴f(x)为奇函数.…(3分)设A(x1,y1),B(x2,y2)且x1≠x2,又f'(x)=3ax2-b,…(5分)∵f(x)在两个相异点A,B处的切线分别为l1,l2,且l1∥l2,∴k1=f′(x1)=3ax12?b=k2=f...

由图象可知: x (-∞,x1) x1 (x1,x2) x2 (x2,+∞) f(x) ↘ 极小值 ↗ 极大值 ↘ f′(x) - 0 + 0 -∴导函数f′(x)=3ax2-2bx+1的图象是开口向下、与x轴交于点(x1,0)、(x2,0)的抛物线∴a<0,x1+x2=2b3a由x1<0,x2>0,且|x1|>|x2|...

由题图可设设f(x)=ax(x-x1)(x-x2)=ax[x2-(x1+x2)x+x1x2]=ax3-a(x1+x2)x2+ax1x2x=ax3+bx2-2x,故b=-a(x1+x2),ax1x2=-2由题中图象,知当x>x2>0时,f(x)>0,且x-x1>0,∴a>0.又∵x1+x2<0,∴b=-a(x1+x2)>0.故有a>0,b>0故...

(1)∵f(-1)=0,∴a-b+1=0,①∵函数f(x)的值域为[0,+∞),∴a>0且判别式△=0,即b2-4a=0,②由①②得a=1,b=2.∴f(x)=ax2+bx+1=x2+2x+1.∴F(x)=x2+2x+1, x>0?x2?2x?1, x<0.(2)g(x)=f(x)-kx=x2+(2-k)x+1,函数的对称轴为x=?2?k2...

解:(1)因为f(-1)=0,所以a-b+1=0因为f(x)的值域为[0,+∞),所以 所以b 2 -4(b-1)=0解得b=2,a=1所以f(x)=(x+1) 2 所以 。(2)因为g(x)=f(x)-kx=x 2 +2x+1-kx=x 2 +(2-k)x+1= 所以当 或 时g(x)单调,即k的取值范围是(-∞...

解:如图

(1) 3和-1 (2) (0,1) (1)当a=1,b=-2时,f(x)=x 2 -2x-3,令f(x)=0,得x=3或x=-1.∴函数f(x)的零点为3和-1.(2)依题意,f(x)=ax 2 +bx+b-1=0有两个不同实根.∴b 2 -4a(b-1)>0恒成立,即对于任意b∈R,b 2 -4ab+4a>0恒成立...

设f(x)=ax2+bx-1=0,由题意得,f(1)?f(2)<0,∴(a+b-1)(4a+2b-1)<0.且a>0.即a+b?1<04a+2b?1>0a>0或a+b?1>04a+2b?1<0a>0,(不合题意舍去)视a,b为变量,作出可行域如图.令a-b=t,设z=a-b∴b=a-z,得到一簇斜率为1,截距为-...

(Ⅰ)由f(x)=ax2+bx-lnx(a,b∈R)知f′(x)=2ax+b-1x又a≥0,故当a=0时,f′(x)=bx?1x若b=0时,由x>0得,f′(x)<0恒成立,故函数的单调递减区间是(0,+∞);若b>0,令f′(x)<0可得x<1b,即函数在(0,1b)上是减函数,在(1b,+∞)上...

网站首页 | 网站地图
All rights reserved Powered by www.tnjk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com