tnjk.net
当前位置:首页 >> 已知函数F(x)=Ax²+2Bx+C(x∈R,A≠0) (I)... >>

已知函数F(x)=Ax²+2Bx+C(x∈R,A≠0) (I)...

解:如图

解:(1)∵x∈(0,5)时,都有x≤f(x)≤2|x﹣1|+1恒成立, ∴1≤f(1)≤2|1﹣1|+1=1, ∴f(1)=1;(2)∵f(﹣1+x)=f(﹣1﹣x), ∴f(x)=ax 2 +bx+c(a,b,c∈R)的对称轴为x=﹣1, ∴﹣ =﹣1,b=2a. ∵当x∈R时,函数的最小值为0, ∴a>0,f(x...

已知a,b,c∈R,函数f(x)=ax²+bx+c,若f﹙0﹚=f﹙4﹚>f﹙1﹚,则 x0=-b/(2a),即x=x0为对称轴 因为a>0,所以f(x0)为最小值 故A正确,因为存在x=x0,有f(x)=f(x0) B正确,x为任意实数都满足f(x)>=f(x0)

(1)若a=0,则c=0,f(x)=2bx,f(2)=4b,f(-2)=-4b,不合题意;若a≠0时,由a+c=0,得f(x)=ax2+2bx-4a,对称轴为x=-ba,假设ba∈(-∞,-2)∪(2,+∞),区间[-2,2]在对称轴的左外侧或右外侧,所以f(x)在[-2,2]上是单调函数,则f(x)...

∵对函数f(x)=ax 2 +bx+c (a≠0,b、c∈R),x取值范围是R,即全体实数集.∵作x=g(t)的代换,使得代换前后函数的值域总不改变,只需x=g(t)的值域为R.A:值域为{t|t>0},B:值域为{t|t≥0},C:值域为[-1,1],D:值域为R.故选D.

解:(1)因为f(-1)=0,所以a-b+1=0因为f(x)的值域为[0,+∞),所以 所以b 2 -4(b-1)=0解得b=2,a=1所以f(x)=(x+1) 2 所以 。(2)因为g(x)=f(x)-kx=x 2 +2x+1-kx=x 2 +(2-k)x+1= 所以当 或 时g(x)单调,即k的取值范围是(-∞...

(1)∵f(-1)=0,∴a-b+1=0,①∵函数f(x)的值域为[0,+∞),∴a>0且判别式△=0,即b2-4a=0,②由①②得a=1,b=2.∴f(x)=ax2+bx+1=x2+2x+1.∴F(x)=x2+2x+1, x>0?x2?2x?1, x<0.(2)g(x)=f(x)-kx=x2+(2-k)x+1,函数的对称轴为x=?2?k2...

本题根据韦达定理求解有-1+2=-b/a, (-1)*2=c/a 同理 新的函数根据韦达定理有x1+x2=-(b+2)/a x1*x2=(c-5)/a, 将第一步的值代入第二步,就有x1+x2=1-2/a x1*x2=-2-5/a 又(x1-x2)^2=(x1+x2)^2-4x1*x2=(1-2/a)^2-4*(-2-5/a),计算得出x1-x2=——...

因为f(1)=1,2b=a-1,再联立f(x)=2bx/ax-1与f(x)=2x从而得出x1=0,x2=b+1/a,因为只有一解,所以b=-1,因此a=-1 f(x)=2x/x+1

网站首页 | 网站地图
All rights reserved Powered by www.tnjk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com